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LElTER TO THE EDITOR 

Perturbation-induced radiative losses in collision of 
NSE solitons 

Yuri S Kivshar and Boris A Malomedt 
Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov 310164, 
USSR 

Received 6 May 1986 

Abstract. The total energy (and its spectral density) emitted during the collision of two 
solitons described by the conservatively perturbed non-linear Schrodinger equation ( NSE) 
is calculated by means of the perturbation theory based on the inverse scattering transform. 
It is shown that the total emitted energy (at large relative velocity) does not depend on 
the relative internal phase of the colliding solitons. The same results are obtained for 
solitons in a system of two weakly coupled non-linear Schrodinger equations. 

The non-linear Schrodinger equation (NSE) 

i u ,+uxx+2~u~2u=EP[u]  (1) 

E being a small parameter, has important applications in numerous physical problems 
(see, e.g., PCsceli 1985, Kodama 1985). In the case E = 0 (NSE proper) this equation 
is well known to be exactly integrable by means of the inverse scattering transform 
(IST) (Zakharov et a1 1980). The simplest exact localised solution is the soliton: 

exp[ -2i5x - 4i( 6’ - T 2 ) t  - $1 
u,(x, t )  = 2ir] 

C O S ~ [ ~ V ( X + ~ [ ~  - x O ) ]  

where 7) is the amplitude, -45 is the velocity and 4 and xo are initial phase parameters 
of this soliton. In the absence of perturbations ( E  = 0) collisions between solitons are 
pure elastic, i.e. they are not accompanied by radiative energy losses. Besides, in the 
exactly integrable case, ‘many-particle’ collisions reduce to a superposition of ‘two- 
particle’ collisions. 

In real physical problems there commonly occur different small perturbations P [  U ]  

breaking the exact integrability. The effect of a dissipative perturbation is rather 
evident: it damps a NSE soliton (Kaup and Newel1 1978, Karpman 1979, Bullough et 
a1 1982). Conservative perturbations result in more subtle effects. One soliton persists 
under the action of these perturbations. However, collisions between the solitons are 
no longer elastic and many-particle effects in collisions arise as well. The latter effects 
have recently been considered for kinks of the sine-Gordon equation (Kivshar and 
Malomed 1986). In the present letter we aim to investigate radiative losses accompany- 
ing collisions between two NSE solitons in the presence of conservative perturbations. 
We shall calculate the spectral density of the energy emitted during the collision and 
the total energy losses. We also calculate the collision-induced losses of the charge 

t Permanent address: P P Shirshov Institute of Oceanology, Moscow 117218, USSR. 
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(or 'number of particles', see Zakharov et a1 (1980)), i.e. one more elementary integral 
of motion of the unperturbed NSE. We reveal that in the limit of large relative velocity 
( 5  + 0;)) the emitted energy does not depend on the phase differences A 4  = 4, - d2 of 
the two colliding solitons, (bl and & being their phase parameters defined in (2). 

First of all we consider the perturbation 

P [ u ]  = (u(4u. (3) 
This perturbation is universal: it describes the first term of the expansion of dispersion 
in powers of an amplitude which breaks the exact integrability (see, e.g., Zakharov et 
a1 1980). 

In terms of IST the radiation part of the wave field governed by the NSE is described 
by the continuous spectrum. The scattering data pertaining a continuous spectrum are 
determined by the complex coefficient b(A, t) ,  A being the real spectral parameter (e.g. 
Zakharov et a1 1980, Ablowitz and Segur 1981). Since the radiation is generated by 
a small perturbation due to the overlapping of colliding solitons, the coefficient b( A, t )  
is small: (b(A,  t ) l z<<  1, and the radiation energy spectral density is (see, e.g., Zakharov 
et a1 1980) 

(4) 
4 

$(A, t )  z - A 2 1 b ( A ,  t)12. 
7T 

In the absence of perturbations the continuous spectrum is decoupled from the solitons, 
i.e. dlb(A, t)12/dt = 0. Under the action of the perturbation (3) b(A, t )  evolves according 
to the equation (Kaup and Newel1 1978, Karpman 1979) 

W 

-- a b ( A y  'I - 4iA2b(A, t )  - E dx lu(x, t)l"{u(x, t ) 9 f 2 ( x ,  t ;  A )  + u*(x, t)9T2(x, t ;  A)}. 
a t  

( 5 )  
Here 9 , , 2 ( x ,  t ;  A )  are the so-called Jost functions (see, e.g., Zakharov et a1 1980, 
Ablowitz and Segur 1981). We shall consider only the case when the amplitudes 7 
(see (2)) of the two colliding solitons are equal. Moreover, the calculation can be 
accomplished explicitly for the case of large velocities *45 of the colliding solitons. 

So, assuming the soliton velocities *45 in the centre-of-mass reference frame to be 
large, f>> 7, it can be verified (see, e.g., Malomed 1985) that the two-soliton Jost 
functions of discrete spectrum and the wave potential can be split into 'one-particle' 
potentials presented, for example, in the paper of Karpman (1979). Therefore the Jost 
functions of a continuous spectrum are simplified too. 

Inserting the Jost functions into ( 5 )  and assuming the radiation is originally absent, 
i.e. taking the initial condition for ( 5 )  in the form 

b(A, t = - a ) = O  

(recall that one soliton is an exact solution of the NSE with conservative perturbation 
(3) and generates no emission), we can calculate the total spectral density of the energy 
emitted during the collision as (4/7r)A21b(A, t = +c0)l2 (see (4)). Omitting the details 
of a rather lengthy calculation, we shall display the result: the emitted energy spectral 
density is ( 5  >> 7 7 )  

+ 2  Re[ exp(iA+)( G ( y )  + G( -?))I} 
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where F (z )  and G(z)  are the complex functions: 

F (z )  = ( ~ / 1 5 ) Q ( z ) ( z - i ) - ~  sech(.rrz/2) (7) 
G(z)  = (2.rr2/9)(t/7)’ exp(-.rrt/7)Q(z)(zZ+ 1)-, sech(.rrz/2). (8) 

Here Q(z) is the complex polynomial: 

Q(z) =49z4+ 156z2+45-4iz(z2+9). (9) 
The parameter A 4  = C#I~ - 4, in (6) is the phase difference between the two solitons at 
the moment of collision. As is seen from (6) and (7)-(9), the radiation spectral density 
maxima lie at the spectrum points A = it, the maximum value itself being 

$,,, - (10) 
The radiation energy is concentrated in the spectral range of width -7 in the vicinity 
of the points A = *A, where A, = 6. Outside those ranges the spectral density falls 
exponentially as exp[ - ( .rr/ q ) l A ,  f A I]. Note that (6) is symmetric relative to changing 
the sign of A which evidently reflects the symmetry between the left and right directions 
in the present problem. Note also that expression (6) immediately determines the 
density of the emitted energy in terms of the radiation wavenumbers k, since A and k 
are related trivially: k = 2A (e.g. Zakharov et a1 1980). 

The term in square brackets in (6), which depends on A 4 ,  is exponentially small 
compared with the first two which are independent of A4.  In (6) we have neglected 
the terms containing faster dependencies on A 4  since those terms are exponentially 
small in comparison with those taken into account. As we see, we arrive here at a 
rather curious inference: the emitted energy (at 5 + CO) does not depend on the parameter 
A 4 .  Note that an analogous conclusion has recently been obtained (Kivshar and 
Malomed 1986) for the perturbation-induced radiative energy loss accompanying the 
collision of two sine-Gordon solitons (kinks): the emitted energy in the limit of large 
relative velocity is asymptotically independent on the relative polarity (T of the two 
kinks (the ‘Pomeranchuk theorem’). The inference obtained in the present problem 
is even more strong: (T for the sine-Gordon kinks is the sign parameter assuming only 
two values *l, while here A 4  is the continuous parameter. 

The total emitted energy E,, is determined by the obvious formula: 
00 

E,,= % ( A )  dA = A ~ ~ ~ ’ + & ~ t ’ ~ ~ e x p ( - . r r 5 / ~ ) ( B ,  cosA4+BB,sinA4).  (11) L 
Here A, B1 and B2 are numerical constants determined by integral representations. 
Their approximate values are 

A = 690.5 B1 = 1200.5 B, = 173.3. 
It is interesting to note that, as one sees from (1 l),  E,, does not vanish at 5 + CO. In 
this respect the NSE differs from the sine-Gordon equation, where the total emitted 
energy falls to zero with the growth of the relative velocity. 

Besides energy, the NSE possesses two more elementary integrals of motion: momen- 
tum P = i dx  (u,u* - u:u)  and charge N = dx lu12 (‘number of particles’). The spec- 
tral density of emitted momentum B ( A )  is simply related to % ( A )  (Zakharov et al 
1980): B ( A )  = -(2A)-’EP(A), but the emitted charge spectral density is X(A) = 
(2A)-,S(A). The total emitted momentum is, evidently, zero. Finally, the total emitted 
charge is 

Ne, = Eem/4t2* 
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Now we consider a system of two linearly coupled NSE: 

~ U , + U , + ~ ~ ~ ) ~ U = E U ~ ,  

i U, + U, + 21 u12u = EU,. 

The system (12) is a natural generalisation of (1) with the perturbed Hamiltonian 
00 

Hpen=-& ~ - ~ d x ( u , u ~ + u ~ u x ) .  

It is, for example, a simple model describing the interactions of small-amplitude 
non-linear excitations (small-amplitude breathers) in a system of two long weakly 
interacting Josephson junctions (see Mineev et al 1981). We consider the collision of 
solitons belonging to the U and U subsystems of (12) and deal with radiative effects. 
It should be noted that these problems are formulated similarly to those considered 
within the framework of one conservatively perturbed NSE (1) and (3). However, for 
the two-component system (12) these problems prove to be essentially simple and 
make it possible to obtain clearer and more detailed results. For instance, in the case 
of one NSE the spectral density of the radiation energy emitted by colliding solitons 
can be explicitly calculated only in the limit of fast solitons (see (6)-(9) and (11)). In 
the case of the system (12) we may perform the calculations for arbitrary values of 
the relative velocity. 

In the framework of the so-called adiabatic approximation (see Karpman 1979) 
the collision between the U soliton and U soliton is pure elastic, i.e. it results only on 
the perturbation-induced phase shifts: 

In the next (radiative) approximation the interactions of these solitons are accompanied 
by radiative energy losses. The radiation energy spectral densities for U and U sub- 
systems may be calculated with the help of (4) and may be presented as follows: 

772&2A2$ 

45" + 02+ 7121 
[A2 + B2 + 2AB cos(A+)] $] (A;  5,711 = 

Here A and B are the real functions: 

f ( c M - 4  B =  ah(b) 
sinh( 7ra/2) cosh(.rrb/2) 

A =  
sinh( m / 2 )  cosh( 7rd/2) 

and h ( x )  and f ( x )  are the simple polynomials: 

h(x) X* - 2(5/ 7 ) ~  + 1 f ( ~ ) = 7 ~ ~ + 2 7 ( A + 5 ) .  
The functions a, b, c and d are connected with the spectral parameter A as follows: 

U = ( A 2  - 2h5 - 7 t 2 +  q2)/475 

b =(A2+2At+552+q2)/4v.$ 

c = ( A 2  -2A5-t t2+ q2)/4q5 

d = ( A 2 + 2 A [ - 3 ~ 2 + ~ 2 ) / 4 q ~ .  
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However, the total emitted energies for U and U subsystems may be calculated 
explicitly only for large relative velocity. In the limit 5 >> 7 the total emitted energy 
(Ee,,J1 for the U subsystem and those (Eem)* for the U subsystem are determined by 
the simple formula ( 6  >> 7) 

(Ee,,J1 = (~5 , , )~=98.62~~75*.  (14) 

The next (non-written) term in (14), which depends on AI$, is exponentially small on 
1715 as compared with the one taken into account in (14). So we see, as above, that 
the emitted energy asymptotically (at the large relative velocity of solitons) does not 
depend on the relative phase parameter AI$. 

In conclusion we would like to note that the radiative effects investigated in the 
present letter (see, e.g., our results (6)-(9) and (11)) can be, in principle, observed in 
experiments, e.g. as the emission of electromagnetic waves generated by collisions 
between Langmuir solitons in plasma (see, e.g., PCsceli 1985), or as the emission of 
dispersive waves induced by the overlapping of solitons in non-linear optical fibres 
(see, e.g., Kodama 1985). 
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